Inhomogeneous and simultaneous Diophantine approximation in beta dynamical systems

نویسندگان

چکیده

In this paper, we investigate inhomogeneous and simultaneous Diophantine approximation in beta dynamical systems. For $\beta>1$ let $T_{\beta}$ be the $\beta$-transformation on $[0,1]$. We determine Lebesgue measure Hausdorff dimension of set \[\left\{(x,y)\in [0,1]^2: |T_{\beta}^nx-f(x,y)|<\varphi(n)\text{ for infinitely many }n\in\mathbb{N}\right\},\] where $f:[0,1]^2\to [0,1]$ is a Lipschitz function $\varphi$ positive $\mathbb{N}$. Let $\beta_2\geq \beta_1>1$, $f_1,f_2:[0,1]\to two functions, $\tau_1,\tau_2$ continuous functions also \begin{aligned}&|T_{\beta_1}^nx-f_1(x)|<\beta_1^{-n\tau_1(x)}\\ &|T_{\beta_2}^ny-f_2(y)|<\beta_2^{-n\tau_2(y)}\end{aligned}\text{ }n\in\mathbb{N}\right\}.\] Under certain additional assumptions, \begin{aligned}&|T_{\beta_1}^nx-g_1(x,y)|<\beta_1^{-n\tau_1(x)}\\ &|T_{\beta_2}^ny-g_2(x,y)|<\beta_2^{-n\tau_2(y)}\end{aligned}\text{ }n\in\mathbb{N}\right\}\] determined, $g_1,g_2:[0,1]^2\to are functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous inhomogeneous Diophantine approximation on manifolds

In 1998, Kleinbock & Margulis [KM98] established a conjecture of V.G. Sprindzuk in metrical Diophantine approximation (and indeed the stronger Baker-Sprindzuk conjecture). In essence the conjecture stated that the simultaneous homogeneous Diophantine exponent w0(x) = 1/n for almost every point x on a non-degenerate submanifold M of Rn. In this paper the simultaneous inhomogeneous analogue of Sp...

متن کامل

Metric Diophantine approximation and dynamical systems

The introductory part will feature: rate of approximation of real numbers by rationals; theorems of Kronecker, Dirichlet, Liouville, Borel-Cantelli; connections with dynamical systems: circle rotations, hyperbolic flow in the space of lattices, geodesic flow on the modular survace, Gauss map (continued fractions); ergodicity, unique ergodicity, mixing, applications to uniform distribution of se...

متن کامل

Exponents of Inhomogeneous Diophantine Approximation

– In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the exponent of approximation to a generic point in R n by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent associate...

متن کامل

Inhomogeneous Non-linear Diophantine Approximation

Let be a strictly positive monotonically decreasing function deened on the set of positive integers. Given real numbers and , consider the solubility of the following two inequalities jq + pj < (q); (1) jq + p + j < (q) (2) for integers p and q. The rst problem is said to be homogeneous and the second inho-mogeneous (see 2]). The well known theorem of Khintchine 2, 4] asserts that for almost al...

متن کامل

Dynamical Diophantine Approximation

Let μ be a Gibbs measure of the doubling map T of the circle. For a μ-generic point x and a given sequence {rn} ⊂ R, consider the intervals (T x − rn (mod 1), T x + rn (mod 1)). In analogy to the classical Dvoretzky covering of the circle we study the covering properties of this sequence of intervals. This study is closely related to the local entropy function of the Gibbs measure and to hittin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126781